Saturday 7 February 2009

Siamese twins

I designed a right angle bracket that I intend to use in pairs. Due to its triangular shape, and the fact that my software creates rectangular rafts, it would be quite wasteful to print them individually.

I am not sure if STL files are supposed to contain more than one object. CoCreate seems to think so but ArtOfIllusion not. However, if you have a set of parts that go together to make one item then it would more convenient to store them in one file and print them together.

A simple workaround is to join all your parts together with an impossibly thin rectangle at base level.



The slice software samples at the middle height of each layer so this 0.1mm base gets missed out completely.

The down side is a bit more stringing as the head moves between the two objects.



These were made with 0.5mm filament through a 0.3mm nozzle and highlighted a problem. As you can see the top surface of the lower triangular part is rippled. The reason is that the filament is not being stretched much, if at all. That means that the sparse infill sags because it is not pulled taught. Three solid layers over the top is not enough to recover to flat as they are not being pulled tight either.

So it appears that some stretch is definitely needed unless you are making a solid object. Here is the same thing made with 0.4mm filament and all is well again.



The upper limit on filament diameter that is usable from a given size of nozzle is somewhat less than the die swell as you need to stretch it a bit.

Wednesday 4 February 2009

Top tip

I got the tip to use welding tips for an extruder nozzle from Andy. They come in packs of five from Halfords for £4 on-line and £5 in the shops.



They are made from copper and have a 0.6mm hole down the middle. The thread is M5.

I drilled out the one on the right to 3mm, almost to the end, to reduce the pressure needed to extrude. They drill easily if the drill is lubricated with a little paraffin. It's a shame they don't work as is, but all the same it is much quicker and easier than turning, drilling and tapping the standard design.

They also simplify my evolving extruder design because the heater block no longer needs a spout. I can simply drill and tap the bottom of the melt chamber M5 and screw these in. I can also change the M8 penny washer for an M6 one. That allows me to reduce the outside diameter of the PEEK collar to 8mm so it can be made from the same stock as the thermal transition. The area of the collar will be less so it will conduct less heat.

The 0.6mm orifice can be made smaller if necessary by filling it with high temperature solder and then drilling it with a fine drill. Solder is very easy to drill so less chance of breaking a fine bit. Also Vik Olliver suggested you can make a small hole by soldering in some fine Nichrome wire and then pulling it out again to leave the hole (solder does not stick to Nichrome).

I haven't tried one yet but I can't see any reason why they wont work well.

Monday 2 February 2009

Evolving extruder

The fanless version of my new year extruder works well but is not the easiest thing to make.



I have redesigned the lower half to be a lot simpler. I also wanted to see what would happen if I made a cavity of molten plastic inside the heater. Up till now I have been trying to minimise the amount of molten plastic to reduce ooze, but according to Anon's comments here, professional machines have a relatively large melt chamber. I wondered if plunging the filament into a chamber of already molten plastic would make it any easier to feed.

This is a cross section of my design: -


The plastic clamp and cylindrical finned heatsink have been replaced by a single horizontal 6mm thick aluminium plate that combines both roles.



The easiest and most accurate way to have made this would have been to mill it with HydraRaptor. If I make another, that will be the way I do it, but I made this one with a hack saw, a file and a drill press. I start by gluing a paper template on the aluminium with stencil mount.

I then centre punch through the cross hairs and drill all the holes. The paper can be removed easily by dissolving the spray mount with paraffin. The larger mounting holes fit the Darwin X-carriage and the smaller ones fit HydraRaptor. The group of four holes allow the standard filament guide to be attached. The Darwin extruder clamp has slots but slightly oversized holes are fine.

The 8mm counter bore was a bit tricky. I drilled it with an 8mm drill and then bottomed it with an 8mm end mill. That showed that my drill press / mill is not really stiff enough to mill aluminium with an 8mm bit even though it has a 45mm thick steel pillar. I don't think HydraRaptor would have any problem doing it slowly with a small end mill. It probably doesn't make much difference if the counter bore does not have a flat bottom, so simply drilling would suffice.

Moving down the design is the PEEK insulator that forms the short thermal transition zone.



This is 8mm PEEK rod tapped with an M8 x 1 thread so it can screw into the heater block. I used the metric fine pitch because I didn't have the correct tap drill for M8 x 1.25 (6.75mm). The 3.5mm hole down the middle is drilled in-situ to ensure it lines up with the hole through the heatsink.

Small diameter PEEK rods are far more reasonably priced: 250mm x 8mm is only £3 here and is enough to make about 20.

The heater is a block of aluminium with a 6.5mm hole through it to take a vitreous enamel resistor for the heating element as described before.



As well as the tapped entrance to the melt chamber there is a small hole to take the thermistor.

I made this on my lathe, using a four jaw chuck. It could however be made with a drill press if the nozzle screwed into it instead of it screwing into the nozzle. The lathe gets all the faces perfectly square but there is no reason why it has to be accurate.

The next part down is a PEEK collar to insulate the heater from its retaining washer.



This is the only part I haven't thought of a way to make without a lathe. It might be possible to mill it with the right shaped cutter.

It snaps into the stainless steel washer and is a tight fit to the M6 spout so it anchors the nozzle laterally as well as vertically. It is counter bored at the back to reduce the thermal coupling.



Here is the assembly: -



It leaked a little bit of ABS but it seemed to stop when the leaked ABS oxidised. I should have sealed the joint with PTFE plumbers tape as I normally do. Apart from that it seems to work very well. I was able to manually push ABS through a 0.5mm nozzle very easily, at great speed. HDPE extrudes pretty quickly as well. When I stop pushing, it stops pretty quick. I think with a reversible drive ooze should be OK.

The design is much shorter than the previous one which will increase the build volume on Darwin. It is also very rigid so will not deflect when extruding.

I intend to simplify construction further. Rather than drill the stainless steel washer I can use the technique Ian Adkins uses on the BfB extruder where it is trapped between nuts and washers on studding. The only reason I did it this way was because I had the stainless steel bolts but did not have any M3 stainless studding.

I will also look at screw in nozzles. Andy Hall uses copper welding tips. The exit hole is a bit on the large size but I can reduce it by blocking it with high temperature solder and then drilling that, as I did with the solder sucker bit I tried.

The next task is to make a reliable drive mechanism to go on top.